‘the Classification of Hamiltonian Stationary Lagrangian Tori in Cp^2 by Their Spectral Data’
نویسندگان
چکیده
It is known that all weakly conformal Hamiltonian stationary Lagrangian immersions of tori in CP may be constructed by methods from integrable systems theory. This article describes the precise details of a construction which leads to a form of classification. The immersion is encoded as spectral data in a similar manner to the case of minimal Lagrangian tori in CP, but the details require a careful treatment of both the “dressing construction” and the spectral data to deal with a loop of flat connexions which is quadratic in the loop parameter.
منابع مشابه
The Spectral Data for Hamiltonian Stationary Lagrangian Tori in R. Ian Mcintosh and Pascal Romon
Hamiltonian stationary Lagrangian submanifolds are solutions of a natural and important variational problem in Kähler geometry. In the particular case of surfaces in Euclidean 4-space, it has recently been proved that the Euler–Lagrange equation is a completely integrable system, which theory allows us to describe all such 2-tori. This article determines the spectral data, in the integrable sys...
متن کاملHamiltonian stationary Lagrangian surfaces in C 2
We study Hamiltonian stationary Lagrangian surfaces in C, i.e. Lagrangian surfaces in C which are stationary points of the area functional under smooth Hamiltonian variations. Using loop groups, we propose a formulation of the equation as a completely integrable system. We construct a Weierstrass type representation and produce all tori through either the integrable systems machinery or more di...
متن کاملHamiltonian stationary Lagrangian tori contained in a hypersphere
The Clifford torus is a torus in a three-dimensional sphere. Homogeneous tori are simple generalization of the Clifford torus which still in a three-dimensional sphere. There is a way to construct tori in a threedimensional sphere using the Hopf fibration. In this paper, all Hamiltonian stationary Lagrangian tori which is contained in a hypersphere in the complex Euclidean plane are constructed...
متن کاملHamiltonian stationary tori in Kähler manifolds
A Hamiltonian stationary Lagrangian submanifold of a Kähler manifold is a Lagrangian submanifold whose volume is stationary under Hamiltonian variations. We find a sufficient condition on the curvature of a Kähler manifold of real dimension four to guarantee the existence of a family of small Hamiltonian stationary Lagrangian tori. Mathematics Subject Classification (2000) 58J37 · 35J20 · 35J48...
متن کاملThe Novikov – Veselov hierarchy of equations and integrable deformations of minimal Lagrangian tori in C P 2
We associate a periodic two-dimensional Schrödinger operator to every Lagrangian torus in CP 2 and define the spectral curve of a torus as the Floquet spectrum of this operator on the zero energy level. In this event minimal Lagrangian tori correspond to potential operators. We show that Novikov–Veselov hierarchy of equations induces integrable deformations of minimal Lagrangian torus in CP 2 p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010